Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity.

نویسندگان

  • G Zhang
  • S Ghosh
چکیده

Innate immunity is an ancient form of host defense that is shared by almost all multicellular organisms (1, 2). However, it is not a redundant defense mechanism, and recent evidence has shown that innate immunity not only provides a first line of antimicrobial host defense, but also has a profound impact on the establishment of adaptive immune responses (1, 3). Upon infection, microorganisms are first recognized by cells of the host innate immune system, such as phagocytic leukocytes, endothelial and mucosal epithelial cells, and professional antigen-presenting cells. Recognition of pathogens is primarily mediated by a set of germlineencoded molecules on innate immune cells that are referred to as pattern recognition receptors (PRRs) (3). Well characterized PRRs include CD14, β2-integrins (CD11/CD18), C-type lectins, macrophage scavenger receptors, and complement receptors (CR1/CD35, CR2/CD21) (3). These PRRs are expressed as either membrane-bound or soluble proteins that recognize invariant molecular structures called pathogen-associated molecular patterns (PAMPs) that are shared by many pathogens but not expressed by hosts (3). Examples of PAMPs include LPS, bacterial lipoprotein (BLP), peptidoglycan (PGN) lipoteichoic acid (LTA), unmethylated CpG DNA of bacteria, lipoarabinomannan (LAM) of mycobacteria, and mannans of yeast (3). Recognition of PAMPs by PRRs results in the activation of different intracellular signaling cascades that in turn lead to the expression of various effector molecules (3). One group of effector molecules consists of reactive oxygen and nitrogen intermediates and various antimicrobial peptides that have direct microbicidal activity and collectively provide immediate protection for hosts. Another group includes cytokines, chemokines, adhesion molecules, and acute phase proteins that are involved in inflammation and early host defense as well as the development of adaptive immune responses. The third group consists of the costimulatory molecules B7.1 and B7.2, which bind CD28 on T cells and act as the second signal for T-cell activation. Therefore, signaling by the PRRs helps to bridge innate and adaptive immunity and allows the host to cope more efficiently with microbial infection. In keeping with the important role that innate immunity plays in protecting multicellular organisms from infection, components of the innate immune response, including pathogen recognition molecules, signal transduction pathways, and downstream effector molecules, are all evolutionarily conserved and are used by insects, plants, and mammals (2). Recent studies on the recognition of microbial PAMPs have highlighted the critical role of one group of PRRs, the Toll-like receptors (TLRs), in pathogen recognition and host defense. These TLRs are distinguished from other PRRs by their ability to recognize and, more significantly, discriminate between, different classes of pathogens (reviewed in refs. 4, 5). Engagement of TLRs by pathogens leads to the activation of innate immune responses (5), and a major signaling target of the TLRs is activation of the transcription factor NF-κB, a key regulator of immune and inflammatory responses (reviewed in refs. 6–8). Interestingly, TLR-mediated NF-κB activation is also an evolutionarily conserved event that occurs in phylogenetically distinct species ranging from insects to mammals (5, 9, 10). Here, we focus on the role of the conserved TLR/NF-κB signaling pathway in innate immunity, as well as its impact on adaptive immune responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociation of Toll-like receptor 2-mediated innate immune response to Zymosan by organic solvent-treatment without loss of Dectin-1 reactivity.

Zymosan activates phagocytes through the innate immune system and causes inflammatory responses in animals. Because of the complexity of the active substances included in Zymosan preparations, simplifying the active moiety actually responsible for innate immune recognition is needed. One way to remove possible active substances from commercially available Zymosan preparations is to wash then wi...

متن کامل

Pellino enhances innate immunity in Drosophila

The innate immune response is a defense mechanism against infectious agents in both vertebrates and invertebrates, and is in part mediated by the Toll pathway. Toll receptor activation upon exposure to bacteria causes stimulation of Pelle/IRAK kinase, eventually resulting in translocation of the transcription factor NF-kappaB to the nucleus. Here we show that Pellino, a highly conserved protein...

متن کامل

CC chemokine receptor 4 modulates Toll-like receptor 9-mediated innate immunity and signaling.

The present study addressed the modulatory role of CC chemokine receptor 4 (CCR4) in Toll-like receptor (TLR) 9-mediated innate immunity and explored the underlying molecular mechanisms. Our results demonstrated that CCR4-deficient mice were resistant to both septic peritonitis induced by cecal ligation and puncture (CLP) and CpG DNA/D-galactosamine-induced shock. In bone marrow-derived macroph...

متن کامل

Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans.

Remarkable structural and functional similarities exist between the Drosophila Toll/Cactus/Dorsal signaling pathway and the mammalian cytokine-mediated interleukin-1 receptor (IL-1R)/I-kappaB/NF-kappaB activation cascade. In addition to a role regulating dorsal-ventral polarity in the developing Drosophila embryo, signaling through Drosophila Toll (dToll) activates the nonclonal, or innate, imm...

متن کامل

Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors.

The transcription factor NF-kappaB in human intestinal epithelial cells plays a central role in regulating genes that govern the onset of mucosal inflammatory responses following intestinal microbial infection. Nod1 is a cytosolic pattern recognition receptor in mammalian cells that senses components of microbial peptidoglycans and signals the activation of NF-kappaB. The aim of these studies w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2001